高级检索
当前位置: 首页 > 详情页

Automated Localization of Myocardial Infarction From Vectorcardiographic via Tensor Decomposition

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [2]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [3]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [4]Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China [5]Hebei Univ, Affiliated Hosp, Baoding, Peoples R China [6]Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
出处:
ISSN:

关键词: Feature extraction Spatiotemporal phenomena Tensors Location awareness Electrocardiography Myocardium Heart Localization myocardial infarction Tensor Tucker decomposition vectorcardiogram

摘要:
Objective: Myocardial infarction (MI) causes rapid and permanent damage to the heart muscle. Therefore, it can deteriorate the myocardial structure and function if not timely diagnosed and treated. However, it is difficult to determine the precise localization of MI based on vectorcardiogram (VCG) due to the existing studies ignore the spatiotemporal features of VCG.Methods: In this paper, a precise MI localization method was proposed based on Tucker decomposition. The multi-scale characteristics of wavelet transform and the spatiotemporal characteristics of VCG were used to construct the VCG tensor containing the local and the spatiotemporal information. The VCG tensor was compressed in the time dimension based on Tucker decomposition to remove redundant information and extract the local spatiotemporal features. The features were fed back to the TreeBagger classifier.Results: The proposed method achieved a total accuracy of 99.80% for 11 types of MI on the benchmark Physikalisch-Technische Bundesanstalt database. The area under the receiver operating characteristic curves and precision-recall curves of each kind of VCG signal was more than 0.88.Conclusion: The proposed algorithm effectively realized the classification of normal and 11 categories of MI using VCG. Significance: Therefore, this study provides new ideas for the intelligent diagnosis of MI based on VCG.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [2]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China
通讯作者:
通讯机构: [3]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [4]Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号