高级检索
当前位置: 首页 > 详情页

A multi-dimensional association information analysis approach to automated detection and localization of myocardial infarction

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China [3]Hebei Univ, Affiliated Hosp, Baoding 071002, Peoples R China [4]Nanyang Technol Univ, Coll Comp Engn, Singapore 639798, Singapore [5]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
出处:
ISSN:

关键词: Myocardial infarction Electrocardiograph Multi-dimensional association tensor Parallel factor analysis Bagged decision tree

摘要:
Developing an accurate and automatic algorithm for detection and localization of myocardial infarction (MI) remains a great challenge for multi-lead electrocardiograph (ECG) signals. The core is a novel technique of multi-dimensional association information analysis for a multi-lead ECG tensor. Tensorization based on Discrete Wavelet Transform is investigated to construct an effective ECG tensor containing multi-dimensional association information from 12-lead ECG signals. The multi-lead feature extraction algorithm based on Parallel Factor Analysis is developed to automatically extract the low-dimensional and highly recognizable lead characteristic features of the tensor. After that a bagged decision tree is constructed to categorize 12 types of heartbeats, healthy controls and 11 kinds of MI, from the lead features. Using the PTB database, we compare with the existing MI diagnosis methods. For MI detection, significant improvement of the accuracy, sensitivity and specificity are achieved; as high as 99.88%, 99.98% and 99.39% respectively. Furthermore, an experiment with 36-dimensional features obtained from the ECG tensor is conducted for the localization of 11 kinds of MI, and our proposed method achieved an accuracy of 99.40%, sensitivity of 99.86%, and specificity of 99.89%. The proposed algorithm can effectually accomplish the localization of 11 categories of MI by using the lead features extracted from the multi-dimensional association ECG tensor, which has not been achieved in literature. The accurate and comprehensive tool development will greatly help cardiologists diagnose 12-lead ECG signals of MI.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 计算机科学
小类 | 1 区 工程:综合 2 区 自动化与控制系统 2 区 计算机:人工智能 2 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 工程:综合 2 区 自动化与控制系统 2 区 计算机:人工智能 2 区 工程:电子与电气
JCR分区:
出版当年[2021]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 ENGINEERING, MULTIDISCIPLINARY
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 ENGINEERING, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:3 总访问量:963 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号