高级检索
当前位置: 首页 > 详情页

Localization of myocardial infarction with multi-lead ECG based on DenseNet

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Key Lab Digital Med Engn Hebei Prov, Baoding 071000, Peoples R China [2]Hebei Univ, Coll Elect & Informat Engn, 180 East Wusi Rd, Baoding 071002, Peoples R China [3]Hebei Univ, Coll Phys Sci & Technol, Baoding 071002, Peoples R China [4]Hebei Univ, Affiliated Hosp, Baoding 071002, Peoples R China [5]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
出处:
ISSN:

关键词: Multi-lead ECG DenseNet Structural characteristics Myocardial infarction

摘要:
Background and Objective: Myocardial infarction (MI) is a critical acute ischemic heart disease, which can be early diagnosed by electrocardiogram (ECG). However, the most research of MI localization pay more attention on the specific changes in every ECG lead independent. In our study, the research envisages the development of a novel multi-lead MI localization approach based on the densely connected convolutional network (DenseNet). Methods: Considering the correlation of the multi-lead ECG, the method using parallel 12-lead ECG, systematically exploited the correlation of the inter-lead signals. In addition, the dense connection of DenseNet enhanced the reuse of the feature information between the inter-lead and intra-lead signals. The proposed method automatically captured the effective pathological features, which improved the identification of MI. Results: The experimental results based on PTB diagnostic ECG database showed that the accuracy, sensitivity and specificity of the proposed method was 99.87%, 99.84% and 99.98% for 11 types of MI localization. Conclusions: The proposed method has achieved superior results compared to other localization methods, which can be introduced into the clinical practice to assist the diagnosis of MI. (c) 2021 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 医学:信息 2 区 计算机:理论方法
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 3 区 医学:信息
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Key Lab Digital Med Engn Hebei Prov, Baoding 071000, Peoples R China [2]Hebei Univ, Coll Elect & Informat Engn, 180 East Wusi Rd, Baoding 071002, Peoples R China
通讯作者:
通讯机构: [1]Key Lab Digital Med Engn Hebei Prov, Baoding 071000, Peoples R China [2]Hebei Univ, Coll Elect & Informat Engn, 180 East Wusi Rd, Baoding 071002, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号