高级检索
当前位置: 首页 > 详情页

Localization of Myocardial Infarction From 2D-VCG Tensor With DSC-Net

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hosp Hebei Univ, Baoding 071002, Peoples R China [3]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
出处:
ISSN:

关键词: Index Terms-2-D-vectorcardiogram (2D-VCG) depthwise separable convolutional myocardial infarction (MI) vectorcardiogram (VCG)

摘要:
Myocardial infarction (MI) can cause acute and permanent damage to the myocardial muscle. Vectorcardiogram (VCG) is formed by the time-varying coordinates of cardiac electrical activity in space. According to different infarct locations, the ring of VCG in the three orthogonal planes has pathological morphological changes. Yet the existing algorithms only extract the pathological information of three-lead VCG signals, but they do not fully consider the correlation information between different orthogonal planes. We proposed a depthwise separable convolution network (DSC-Net) for automatic MI localization from 2D-VCG tensor. Using the orthogonality between the lead axes, we first combine the three leads in pairs to form a 2D-VCG, and then construct a 2D-VCG tensor that captures the correlation information between leads. DSC-Net extracts spatial features related to MI obtained in 2D-VCG before Softmax is applied to classify MIs. The proposed method was validated on the benchmark Physikalisch Technische-Bundesanstalt dataset, which includes VCG of 11 types of MI. We demonstrated, with the cardiac electrical activity spatial features obtained from the 2D-VCG tensor, that the accuracy of 11 categories of MI and normal is higher than 99.92%. The proposed model effectively realized the localization of MI with competitively high accuracy for all 11 categories.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:4 总访问量:960 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号