高级检索
当前位置: 首页 > 详情页

Automated Localization of Myocardial Infarction of Image-Based Multilead ECG Tensor With Tucker2 Decomposition

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Phys Sci & Technol, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hebei Univ, Affiliated Hosp, Baoding 071002, Peoples R China [3]Hebei Univ, Inst Life Sci & Green Dev, Affiliated Hosp, Coll Chem & Environm Sci, Baoding 071002, Peoples R China [4]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
出处:
ISSN:

关键词: Electrocardiography Feature extraction Tensors Data mining Location awareness Lead Heart beat Electrocardiograph image-based heartbeat tensor morphological core tensor myocardial infarction (MI) Tucker2 decomposition

摘要:
Myocardial infarction (MI) causes rapid and permanent damage to the heart muscle. Without timely diagnosis and treatment, it will deteriorate the myocardial structure and function. The precise localization of MI based on 12-lead electrocardiogram (ECG) signals still remains a great challenge. We, thus, present a novel algorithm for automatically localizing MI from multilead ECG signals. The image-based heartbeat tensorization establishes a third-order lead x time x amplitude tensor structure. This image tensor encompasses key information between leads and the correlation within the heartbeat, which are essential for the MI diagnosis. The Tucker2 decomposition-based feature extractor automatically extracts the morphological core tensor of the image tensor. The morphological core tensor includes crucial information among three dimensions. Localization of MI is evaluated as a multiclass problem. We use the bagged decision tree for multiclass classification. The 12-lead ECG signals from the benchmark Physikalisch-Technische Bundesanstalt (PTB) database are employed to verify the applicability of the proposed algorithm. The PTB database includes normal ECG, 11 types of MI: anterior, anterior lateral, anterior septal, anterior septal lateral, inferior, inferior lateral, inferior posterior, inferior posterior lateral, lateral, posterior, and posterior lateral. We demonstrated, with the morphological core features obtained from the image tensor, that 12 categories of ECG signals achieved a total accuracy of 99.67% and an F1 score of 0.9997. The area under the receiver operating characteristic curves and precision-recall curves of each kind of ECG signal has been found to be more than 0.88. The proposed algorithm effectively realizes the classification of normal ECG and 11 categories of MI, and our approach of using a 12-lead ECG signal herein holds great promise for helping the cardiologists localize MI.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:电子与电气 2 区 仪器仪表
JCR分区:
出版当年[2022]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Phys Sci & Technol, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号