高级检索
当前位置: 首页 > 详情页

Texture Analysis of Ultrasonic Image Based on Wavelet Packet Denoising and Feature Extraction

| 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Affiliated Hosp Hebei Univ, Dept Funct, Baoding, Peoples R China
出处:

关键词: Image Denoising Waveletet Modulus Maximum Texture Analysis Gray Level Co-occurrence Matrix Feature Extraction

摘要:
The paper introduces a kind of approach for ultrasonic image categorization based on wavelet packet denoising and texture analysis. Firstly, the texture image denoising method based on wavelet packet transform modulus maximum is adopted aiming at texture images of complicated texture and abundant details. The method can maintain image details at the same time of denoising. Then by using gray level co-occurrence matrix (GLCM) method, parameters in four directions which can represent images texture feature efficiently are extracted: energy, contrast, entropy and inverse difference moment. Finally neural network is used to identify two kinds of images according to extracted characteristic parameters and achieves good effects.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号