高级检索
当前位置: 首页 > 详情页

Multi-lead model-based ECG signal denoising by guided filter

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Hebei Univ, Affiliated Hosp, Baoding, Peoples R China [3]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore [4]Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
出处:
ISSN:

关键词: Electrocardiograph (ECG) denoising Multi-lead model-based ECG signal Guided filter Sparse autoencoder

摘要:
The electrocardiogram (ECG) denoising is of paramount importance for accurate disease diagnosis, but individual differences bring great difficulties for ECG denoising, especially for Dynamic Electrocardiography (DCG). In this paper, a multi-lead model-based ECG signal denoising method is proposed, in which a guided filter is inherently adapted to denoise ECG signal. For each person, a patient-specific statistical model will be constructed by sparse autoencoder (SAE) which can effectively preserve the detailed signal features. Thus, the guided signal producing by the statistical model can perform well in the guided filter. Especially, even the sudden morphological changes, the denoised ECG signals can still be conserved. The results on the 12-lead Arrhythmia Database and the MIT-BIH Arrhythmia Database demonstrate that the signal-to-noise ratio (SNR) improvement of the proposed method can reach as high as 21.54 dB, and the mean squared error (MSE) is less than 0.0401. Besides achievement of minimum signal distortion in comparisons with the major of the current denoising algorithms for complex noise environment, the proposed method demonstrate robustness in the complex interferences, especially in tracing the sudden morphological changes of ECG signals. Due to the remarkable superiority in preserving diagnostic and detail features of ECG signals, the proposed method can handle ECG signals with abnormal heart beats, and then can improve the accuracy detection of the disease.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合 3 区 自动化与控制系统 3 区 计算机:人工智能 3 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 工程:综合 2 区 自动化与控制系统 2 区 计算机:人工智能 2 区 工程:电子与电气
JCR分区:
出版当年[2019]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, MULTIDISCIPLINARY Q2 AUTOMATION & CONTROL SYSTEMS
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 ENGINEERING, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Coll Elect & Informat Engn, Baoding, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:2 总访问量:962 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号