高级检索
当前位置: 首页 > 详情页

Localization of myocardial infarction using a multi-branch weight sharing network based on 2-D vectorcardiogram

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hebei Univ, Sch Qual & Tech Supervis, Baoding 071002, Peoples R China [3]Hebei Univ, Affiliated Hosp, Baoding 071002, Peoples R China [4]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
出处:
ISSN:

关键词: Vectorcardiogram Myocardial infarction Multi-branch neural network Weight sharing

摘要:
Early diagnosis and localization of myocardial infarction (MI) assist clinicians in saving numerous lives through the timely treatment for patients with MI. Vectorcardiogram (VCG) can reflect the characteristic changes of cardiac electrical activity in MI in detail. In this context, the present study reports a multi-branch weight sharing network model based on 2-D VCG constructed to realize the automatic localization of MI. The three -branch network extracted the spatial morphological features of the three planes of the 2-D VCG, respectively, and the weight-sharing part of the network obtained the spatial correlation information among the three planes. Subsequently, the Softmax classifier was employed to classify normal individuals and MI patients (11 class infarct sites). To evaluate the performance of the proposed method for MI localization, PTB(Physikalisch-Technische Bundesanstalt) diagnostic ECG database was employed. The localization accuracy, sensitivity, and specificity achieved using the proposed method were 99.87%, 99.92%, and 99.99%, respectively. Thus, the proposed scheme is expected to be useful in assisting cardiologists in interpreting VCG for clinical diagnosis.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 计算机科学
小类 | 1 区 工程:综合 2 区 自动化与控制系统 2 区 计算机:人工智能 2 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 工程:综合 2 区 自动化与控制系统 2 区 计算机:人工智能 2 区 工程:电子与电气
JCR分区:
出版当年[2022]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 ENGINEERING, MULTIDISCIPLINARY
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 ENGINEERING, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding 071002, Peoples R China [2]Hebei Univ, Sch Qual & Tech Supervis, Baoding 071002, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:4 总访问量:960 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号