高级检索
当前位置: 首页 > 详情页

Semiautomatic segmentation of aortic valve from sequenced ultrasound image using a novel shape-constraint GCV model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Multidisciplinary Res Ctr, Baoding 071000, Peoples R China [2]Hebei Univ, Affiliated Hosp, Baoding 071000, Hebei, Peoples R China [3]Hebei Univ, Coll Math & Comp Sci, Baoding 071000, Peoples R China [4]Peking Union Med Coll Hosp, Dept Cardiovasc, Beijing 100005, Peoples R China [5]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China
出处:
ISSN:

关键词: image segmentation aortic valve GCV model energy optimization shape constraint

摘要:
Purpose: Effective and accurate segmentation of the aortic valve (AV) from sequenced ultrasound (US) images remains a technical challenge because of intrinsic factors of ultrasound images that impact the quality and the continuous changes of shape and position of segmented objects. In this paper, a novel shape-constraint gradient Chan-Vese (GCV) model is proposed for segmenting the AV from time serial echocardiography. Methods: The GCV model is derived by incorporating the energy of the gradient vector flow into a CV model framework, where the gradient vector energy term is introduced by calculating the deviation angle between the inward normal force of the evolution contour and the gradient vector force. The flow force enlarges the capture range and enhances the blurred boundaries of objects. This is achieved by adding a circle-like contour (constructed using the AV structure region as a constraint shape) as an energy item to the GCV model through the shape comparison function. This shape-constrained energy can enhance the image constraint force by effectively connecting separate gaps of the object edge as well as driving the evolution contour to quickly approach the ideal object. Because of the slight movement of the AV in adjacent frames, the initial constraint shape is defined by users, with the other constraint shapes being derived from the segmentation results of adjacent sequence frames after morphological filtering. The AV is segmented from the US images by minimizing the proposed energy function. Results: To evaluate the performance of the proposed method, five assessment parameters were used to compare it with manual delineations performed by radiologists (gold standards). Three hundred and fifteen images acquired from nine groups were analyzed in the experiment. The area-metric overlap error rate was 6.89% +/- 2.88%, the relative area difference rate 3.94% +/- 2.63%, the average symmetric contour distance 1.08 +/- 0.43 mm, the root mean square symmetric contour distance 1.37 +/- 0.52 mm, and the maximum symmetric contour distance was 3.57 +/- 1.72 mm. Conclusions: Compared with the CV model, as a result of the combination of the gradient vector and neighborhood shape information, this semiautomatic segmentation method significantly improves the accuracy and robustness of AV segmentation, making it feasible for improved segmentation of aortic valves from US images that have fuzzy boundaries. (C) 2014 American Association of Physicists in Medicine.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2014]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者机构: [1]Hebei Univ, Multidisciplinary Res Ctr, Baoding 071000, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号