This research work is partially supported by the National Natural Science Foundation of China (Grant No.
61375075) and the Natural Science Foundation of Hebei Province of China (Grant Nos. F2019201329 and
F2021201020).
语种:
外文
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
无
最新[2025]版:
大类|3 区医学
小类|3 区工程:生物医学3 区核医学
JCR分区:
出版当年[2024]版:
无
最新[2023]版:
Q1RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGINGQ2ENGINEERING, BIOMEDICAL
第一作者机构:[1]Hebei Univ, Coll Math & Informat Sci, Baoding 071000, Hebei, Peoples R China[2]Hebei Univ, Hebei Key Lab machine Learning & Computat Intellig, Baoding 071000, Hebei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
Wang Bing,Yang Jie,Zhou Yunlai,et al.LEACS: a learnable and efficient active contour model with space-frequency pooling for medical image segmentation[J].PHYSICS IN MEDICINE AND BIOLOGY.2024,69(1):doi:10.1088/1361-6560/ad1212.
APA:
Wang Bing,Yang Jie,Zhou Yunlai,Yang Ying,Tian Xuedong...&Zhang Xin.(2024).LEACS: a learnable and efficient active contour model with space-frequency pooling for medical image segmentation.PHYSICS IN MEDICINE AND BIOLOGY,69,(1)
MLA:
Wang Bing,et al."LEACS: a learnable and efficient active contour model with space-frequency pooling for medical image segmentation".PHYSICS IN MEDICINE AND BIOLOGY 69..1(2024)