高级检索
当前位置: 首页 > 详情页

LEACS: a learnable and efficient active contour model with space-frequency pooling for medical image segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Math & Informat Sci, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Hebei Key Lab machine Learning & Computat Intellig, Baoding 071000, Hebei, Peoples R China [3]Hebei Univ Affiliated Hosp, Baoding 071000, Hebei, Peoples R China [4]Hebei Univ, Coll Cyber Secur & Comp, Baoding 071000, Hebei, Peoples R China [5]Hebei Univ, Coll Elect Informat Engn, Baoding 071000, Hebei, Peoples R China
出处:
ISSN:

关键词: active contour model medical image segmentation deep convolutional neural network space-frequency pooling

摘要:
Diseases can be diagnosed and monitored by extracting regions of interest (ROIs) from medical images. However, accurate and efficient delineation and segmentation of ROIs in medical images remain challenging due to unrefined boundaries, inhomogeneous intensity and limited image acquisition. To overcome these problems, we propose an end-to-end learnable and efficient active contour
segmentation model (LEACS), which integrates a global convex segmentation (GCS) module into a light-weighted encoder-decoder convolutional segmentation network with a multiscale attention module (ED-MSA). The GCS automatically obtains the initialization and corresponding parameters of the curve deformation according to the prediction map generated by the ED-MSA, while provides the refined object boundary prediction for ED-MSA optimization. To provide precise and reliable initial contour for the GCS, we design the space-frequency pooling operation layers in the encoder stage of ED-MSA, which can effectively reduce the number of iterations of
the GCS. Beside, we construct ED-MSA using the depth-wise separable convolutional residual module to mitigate the overfitting of the model. The effectiveness of our method is validated on four challenging medical image datasets. Code is here: https://github.com/Yang-fashion/ED-MSA_GCS.© 2023 Institute of Physics and Engineering in Medicine.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Math & Informat Sci, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Hebei Key Lab machine Learning & Computat Intellig, Baoding 071000, Hebei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号