高级检索
当前位置: 首页 > 详情页

LGI Net: Enhancing local-global information interaction for medical image segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Hebei, Peoples R China [2]Hebei Key Lab Precise Imaging Inflammat Related Tu, Baoding 071000, Hebei, Peoples R China [3]Hebei Univ, Affiliated Hosp, Baoding 071030, Hebei, Peoples R China
出处:
ISSN:

关键词: Medical image segmentation UNet Transformers Cross attention Local-global interaction

摘要:
Medical image segmentation is a critical task used to accurately extract regions of interest and pathological areas from medical images. In recent years, significant progress has been made in the field of medical image segmentation using deep learning and neural networks. However, existing methods still have limitations in terms of fusing local features and global contextual information due to the complex variations and irregular shapes of medical images. To address this issue, this paper proposes a medical image segmentation architecture called LGI Net, which improves the internal computation to achieve sufficient interaction between local perceptual capabilities and global contextual information within the network. Furthermore, the network incorporates an ECA module to effectively capture the interplay between channels and improve inter-layer information exchange capabilities. We conducted extensive experiments on three public medical image datasets: Kvasir, ISIC, and X-ray to validate the effectiveness of the proposed method. Ablation studies demonstrated the effectiveness of our LGAF, and comparative experiments confirmed the superiority of our proposed LGI Net in terms of accuracy and parameter efficiency. This study provides an innovative approach in the field of medical image segmentation, offering valuable insights for further improvements in accuracy and performance. The code and models will be available at https://github.com/LiuLinjie0310/LGI-Net.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 数学与计算生物学 2 区 生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding 071002, Hebei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号