高级检索
当前位置: 首页 > 详情页

Dual-decoder data decoupling training for semi-supervised medical image segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Math & Informat Sci, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Hebei Key Lab Machine Learning & Computat Intellig, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China [3]Hebei Univ, Hebei Univ Affiliated Hosp, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China [4]Hebei Univ, Coll Elect Informat Engn, Qiyi Rd 2666, Baoding 071000, Hebei, Peoples R China
出处:
ISSN:

关键词: Semi-supervised learning Medical image segmentation Pseudo labeling Consistency regularization Data decoupling

摘要:
Semi-supervised learning (SSL) is an effective strategy for extracting useful information from unlabeled datasets to improve deep model performance. SSL is widely used in medical image segmentation to alleviate the burden of expensive pixel-level labeling. Most existing SSL-based medical image segmentation methods use all unlabeled data equally to update the model via unsupervised loss. However, not all unlabeled data are applicable to the same model training process due to differences in data quality and importance. In this study, we propose a dual-decoder data decoupling training-based semi-supervised medical image segmentation network (DD-Net) that enables the model to focus on challenging regions. DD-Net decouples the prediction of unlabeled data into data with different functions based on the degree of confidence matching from two student decoders and adopts different optimization strategies for different functional data. Specifically, for high- reliability part, we employ cross pseudo supervision learning to improve the reliability of model prediction. For divergent predictions, we propose mutual matching learning to guide the model to learn richer information in high uncertainty data by assigning high entropy to the prediction data. For low-confidence prediction, we employ reinforcement consistency learning to enhance the context representations of the model to effectively extract important details, such as edges and contours, from unlabeled data. Experiments on four medical challenging image datasets demonstrate that our method outperforms existing state-of-the-art methods. The code is available at https://github.com/TaifengHuang/DD-Net.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Math & Informat Sci, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Hebei Key Lab Machine Learning & Computat Intellig, Wusi Rd 180, Baoding 071000, Hebei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号