高级检索
当前位置: 首页 > 详情页

MPF-Net: A multi-scale feature learning network enhanced by prior knowledge integration for medical image segmentation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Peoples R China [2]Hebei Univ, Affiliated Hosp, Dept Anesthesiol, Baoding 071000, Peoples R China [3]Hebei Univ, Clin Med Coll, Baoding 071000, Peoples R China [4]Hebei Univ, Natl & Local Joint Engn Res Ctr Metrol Instrument, Baoding 071002, Peoples R China [5]Hebei Univ, Hebei Technol Innovat Ctr Lightweight New Energy V, Baoding 071002, Peoples R China [6]Xi An Jiao Tong Univ, Talented Youth Class Qian Xuesen Coll, Xian 710049, Peoples R China
出处:
ISSN:

关键词: Parallel convolutional block Transformer Super pixel Medical Image Segmentation

摘要:
Precise delineation of medical images plays a crucial role in advancing automated diagnostic systems and therapeutic strategy development. Despite the advancements in traditional CNN-based segmentation methods, they encounter significant hurdles, primarily the limited capability in capturing long-range dependencies due to the inherent localization of convolution operations, and the reduced segmentation accuracy resulting from uniform down sampling when extracting diverse scale features. We present MPF-Net, an integrated architecture that systematically addresses these limitations through designed to boost the efficiency and robustness of medical image segmentation. MPF-Net is composed of three integral components: (1) a prior information branch that employs super pixels to filter out redundant information and integrate key edge details as prior knowledge; (2) parallel convolution blocks that effectively extract diverse scale features and local context from medical images, accommodating their varying shapes and sizes; and (3) a channel-wise cross-fusion attention block, which is based on Transformer architecture, designed to capture long-range dependencies and diminish semantic gaps. Extensive experiments on three medical image segmentation datasets demonstrate MPF-Net's effectiveness, with DSC scores of 81.84 %, 91.10 %, and 90.73 % achieved on MoNuSeg, GLaS, and ISIC2018 datasets. Further evaluation on the external PH2 dataset yields a DSC of 78.73 %. MPF-Net delivers high-precision and robust generalization capabilities for segmenting complex medical images.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合
JCR分区:
出版当年[2025]版:
最新[2024]版:
Q1 ENGINEERING, MULTIDISCIPLINARY

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Peoples R China [4]Hebei Univ, Natl & Local Joint Engn Res Ctr Metrol Instrument, Baoding 071002, Peoples R China [5]Hebei Univ, Hebei Technol Innovat Ctr Lightweight New Energy V, Baoding 071002, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:19604 今日访问量:0 总访问量:1147 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号