高级检索
当前位置: 首页 > 详情页

MiR-1/GOLPH3/Foxo1 Signaling Pathway Regulates Proliferation of Bladder Cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Urol Dept, Affiliated Hosp, 212 East Yuhua Rd, Baoding 071000, Peoples R China
出处:
ISSN:

关键词: bladder cancer miR-1 GOLPH3 Foxo1

摘要:
Objective: To investigate role of microRNA-1/Golgi phosphoprotein 3/Foxo1 axis in bladder cancer. Methods: The expression of Golgi phosphoprotein 3 was determined in both bladder cancer tissues and cell lines using quantitative real-time polymerase chain reaction and Western blotting, respectively. Golgi phosphoprotein 3 was knocked down by small hairpin RNA. MicroRNA-1 was overexpressed or inhibited by microRNA-1 mimic or inhibitor. Cell viability and proliferation were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) and colony-formation assay. Cell apoptosis and cycle was detected using flow cytometer. The expression of microRNA-1 and Golgi phosphoprotein 3 was determined using quantitative real-time polymerase chain reaction and Western blotting was used to test the expression of Golgi phosphoprotein 3, Foxo1, p-Foxo1, AKT, p-AKT, p27, and CyclinD1. Binding between microRNA-1 and Golgi phosphoprotein 3 was confirmed by Dual-Luciferase Reporter Assay. Results: MicroRNA-1 was downregulated in bladder cancer tissues, while Golgi phosphoprotein 3 was overexpressed in bladder cancer cells and tissues. In both bladder cancer 5637 and T24 cell lines, the cell viability and proliferation were dramatically reduced when Golgi phosphoprotein 3 was knocked down. The inhibition of Golgi phosphoprotein 3 remarkably promoted cell apoptosis and induced cell-cycle arrest, as well as decreased the expression of p-Foxo1, p-AKT, and CyclinD1 and increased the expression of p27. The overexpression of microRNA-1 significantly inhibited cell viability and proliferation, induced G-S cell-cycle arrest, and decreased the expression of Golgi phosphoprotein 3, p-Foxo1, and CyclinD1 and upregulated p27, while inhibition of microRNA-1 led to opposite results. Golgi phosphoprotein 3 was a direct target for microRNA-1. Conclusion: Overexpression of microRNA-1 inhibited cell proliferation and induced cell-cycle arrest of bladder cancer cells through targeting Golgi phosphoprotein 3 and regulation of Foxo1.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2019]版:
Q4 ONCOLOGY
最新[2023]版:
Q3 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Hebei Univ, Urol Dept, Affiliated Hosp, 212 East Yuhua Rd, Baoding 071000, Peoples R China
通讯作者:
通讯机构: [1]Hebei Univ, Urol Dept, Affiliated Hosp, 212 East Yuhua Rd, Baoding 071000, Peoples R China [*1]Hebei Key Lab Chron Kidney Dis & Bone Metab, Baoding 071000, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15679 今日访问量:0 总访问量:1035 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号