高级检索
当前位置: 首页 > 详情页

miR-486-5p diagnosed atrial fibrillation, predicted the risk of left atrial fibrosis, and regulated angiotensin II-induced cardiac fibrosis via modulating PI3K/Akt signaling through targeting FOXO1

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China. [2]Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China.
出处:
ISSN:

关键词: Atrial fibrillation Atrial fibrosis Cardiac fibroblasts miRNA Diagnosis

摘要:
This study focused on miR-486-5p in atrial fibrillation (AF) evaluating its clinical significance and revealing its regulatory mechanism in cardiac fibroblasts, aiming to explore a novel biomarker for AF. The study enrolled 131 AF patients and 77 non-AF individuals. With the help of polymerase chain reaction (PCR), the expression of miR-486-5p was evaluated. The significance of miR-486-5p in the diagnosis of AF and the occurrence of left atrial fibrosis (LAF) was assessed by receiver operating curve (ROC) and logistic analyses. The regulatory effect and mechanism of miR-486-5p on cardiac fibrosis were investigated in human cardiac fibroblasts treated with angiotensin II. miR-486-5p was significantly upregulated in AF patients and discriminated AF patients from non-AF individuals. Increasing miR-486-5p showed a significant association with decreasing left ventricular ejection fraction (LVEF), increasing left atrial diameter (LAD) and left ventricular end-diastolic diameter (LVEDd), and the high incidence of LAF in AF patients. Moreover, miR-486-5p was identified as a risk factor for LAF and could distinguish AF patients with LAF and without LAF. In cardiac fibroblasts, angiotensin II induced the upregulation of miR-486-5p and promoted cell proliferation, migration, and collagen synthesis. miR-486-5p negatively regulated forkhead box O1 (FOXO1) and its knockdown could reverse the promoted effect of angiotensin II. FOXO1 alleviated the effect of miR-486-5p, and the miR-486-5p/FOXO1 could activate PI3K/Akt signaling. The activation of PI3K/Akt signaling alleviated the enhanced proliferation, migration, and collagen synthesis of cardiac fibroblasts induced by angiotensin II, and its inhibition showed opposite effects. Increased miR-486-5p served as a biomarker for the diagnosis and development prediction of AF. miR-486-5p regulated cardiac fibroblast viability and collagen synthesis via modulating the PI3K/Akt signaling through targeting FOXO1.© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 细胞生物学
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q3 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Department of Cardiology, Affiliated Hospital of Hebei University, No. 212, Yuhua East Road, Baoding, 071000, People's Republic of China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号