高级检索
当前位置: 首页 > 详情页

Automatic diagnosis of premature ventricular contraction based on Lyapunov exponents and LVQ neural network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [2]Middlesex Univ, Sch Sci & Technol, London N17 8HR, England [3]Hebei Univ, Affiliated Hosp, Baoding, Peoples R China
出处:
ISSN:

关键词: PVC ECG Lyapunov exponents LVQ neural network Classification

摘要:
Premature ventricular contraction (PVC) is a common type of abnormal heartbeat. Without early diagnosis and proper treatment, PVC may result in serious harms. Diagnosis of PVC is of great importance in goal-directed treatment and preoperation prognosis. This paper proposes a novel diagnostic method for PVC based on Lyapunov exponents of electrocardiogram (ECG) beats. The methodology consists of preprocessing, feature extraction and classification integrated into the system. PVC beats can be classified and differentiated from other types of abnormal heartbeats by analyzing Lyapunov exponents and training a learning vector quantization (LVQ) neural network. Our algorithm can obtain a good diagnostic result with little features by using single lead ECG data. The sensitivity, positive predictability, and the overall accuracy of the automatic diagnosis of PVC is 90.26%, 92.31%, and 98.90%, respectively. The effectiveness of the new method is validated through extensive tests using data from MIT-BIH database. The experimental results show that the proposed method is efficient and robust. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:跨学科应用 3 区 计算机:理论方法 4 区 工程:生物医学 4 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 3 区 医学:信息
JCR分区:
出版当年[2015]版:
Q1 COMPUTER SCIENCE, THEORY & METHODS Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 MEDICAL INFORMATICS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:4 总访问量:964 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号