高级检索
当前位置: 首页 > 详情页

Prediction of the composition of urinary calculi using artificial intelligence

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Dept Urol, Affiliated Hosp, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Coll Clin Med, Affiliated Hosp, Baoding 071000, Hebei, Peoples R China
出处:
ISSN:

关键词: Calculi Composition Faster R-CNN Urinary Calculi

摘要:
Objective: To explore the capability and clinical application potential of the Faster Region-based Convolutional Neural Network (Faster R-CNN), an Artificial intelligence algorithm, in identifying the composition of urinary calculi from CT images. Method: This was a retrospective study. Data from 776 patients with urinary calculi treated at the Affiliated Hospital of Hebei University from August 2020 to December 2023 were collected. Patients with simple calculi were randomly divided into a model construction group and validation Group-I at a 5:1 ratio, while 60 cases of mixed calculi were randomly selected to form validation Group-II. The model construction group was employed to construct and test the performance of the Faster R-CNN model, while the validation groups were used to verify the model's performance. Results: In validation Group-I, the model achieved an area under the curve (AUC) of 0.843. In validation Group-II, the kappa values for the model's prediction of calcium oxalate and uric acid components, consistent with infrared spectroscopy analysis, were 0.649 and 0.653, respectively. Conclusion: Faster R-CNN demonstrates a robust capability for quantitative prediction of the composition of urinary calculi, indicating substantial promise for clinical applications.

语种:
WOS:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
JCR分区:
出版当年[2025]版:
最新[2024]版:
Q2 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Univ, Dept Urol, Affiliated Hosp, Baoding 071000, Hebei, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:19602 今日访问量:0 总访问量:1147 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号