高级检索
当前位置: 首页 > 详情页

One-Dimensional Convolutional Multi-branch Fusion Network for EEG-Based Motor Imagery Classification

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Hebei, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Hebei, Peoples R China [3]Hebei Univ, Affiliated Hosp, Baoding, Hebei, Peoples R China
出处:
ISSN:

关键词: Brain-Computer Interface (BCI) Electroencephalography (EEG) Motor imagery (MI) 1D Convolutional neural network

摘要:
The Brain-Computer Interface (BCI) system based on motor imagery (MI) is a hot research topic nowadays, which can control external devices through the brain and has a wide range of applications in rehabilitation, gaming, and entertainment. Due to the non-smooth, non-linear, and low signal-to-noise ratio of the MI EEG signal, it is challenging to accurately decode the MI task intention. A new end-to-end deep learning method is proposed to decode raw MI EEG signals without preprocessing, such as filtering and feature reinforcement. The 1D convolution is used to learn the time-frequency features in MI signals, and a four-branch fusion network is used as the main body to add a 1D CNN-AE block and 1D SE-block to enhance the algorithm's performance. Experiments on two publicly available datasets demonstrate that our proposed algorithm outperforms the current state-of-the-art methods. It achieves 86.11% and 89.51% on the BCI Competition IV-2a and the BCI Competition IV-2b datasets, respectively, and a 6.9% improvement in the generalizability test. The proposed data enhancement method can effectively alleviate the overfitting of the algorithm and improve the decoding performance. Further analysis shows that 1D convolution can effectively extract the features associated with the MI task.(c) 2023 AGBM. Published by Elsevier Masson SAS. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Hebei, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Hebei, Peoples R China
通讯作者:
通讯机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Hebei, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Hebei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:2 总访问量:962 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号