高级检索
当前位置: 首页 > 详情页

Recognition of liver tumors by predicted hyperspectral features based on patient's computed tomography radiomics features

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China [2]Res Ctr Machine Vis Engn & Technol Hebei Prov, Baoding 071000, Peoples R China [3]Key Lab Digital Med Engn Hebei Prov, Baoding 071000, Peoples R China [4]Chinese Acad Med Sci & Peking Union Med Coll CAMS, Peking Union Med Coll Hosp, Dept Liver Surg, Beijing 100010, Peoples R China [5]Hebei Univ, Affiliated Hosp, Baoding 071000, Peoples R China
出处:
ISSN:

关键词: Radiomics Prediction model Hyperspectral image Liver cancer

摘要:
Background: Primary liver tumors can be a serious threat to life and health. Early diagnosis may be life saving. Therefore, enhancing the accuracy of non-invasive early detection of liver tumors is imperative. Methods: Firstly, image enhancement was applied to augment the dataset, resulting in a total of 464 samples after employing seven data augmentation methods. Subsequently, the XGBoost model was utilized to construct and learn the mapping relationship between Computed Tomography (CT) and corresponding hyperspectral imaging (HSI) data. This model enables the prediction of HSI features corresponding to CT features, thereby enriching CT with more comprehensive hyperspectral information.Results: Four classifiers were employed to discern the presence of tumors in patients. The results demonstrated exceptional performance, with a classification accuracy exceeding 90%.Conclusions: This study proposes an artificial intelligence-based methodology that utilizes early CT radiomics features to predict HSI features. Subsequently, the results are utilized for non-invasive tumor prediction and early screening, thereby enhancing the accuracy of non-invasive liver tumor detection.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding 071000, Peoples R China [2]Res Ctr Machine Vis Engn & Technol Hebei Prov, Baoding 071000, Peoples R China [3]Key Lab Digital Med Engn Hebei Prov, Baoding 071000, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号