高级检索
当前位置: 首页 > 详情页

Hyperspectral-attention mechanism-based improvement of radiomics prediction method for primary liver cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Res Ctr Machine Vis Engn & Technol Hebei Prov, Baoding, Peoples R China [3]Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [4]Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Liver Surg, CAMS & PUMC, Beijing 100010, Peoples R China [5]Hebei Univ, Affiliated Hosp, Baoding 071000, Peoples R China
出处:
ISSN:

关键词: HSI radiomics CT primary liver cance Hyperspectral Imaging

摘要:
Objective: To improve the accuracy of the prediction of primary liver cancer by radiomics employing non invasive hyperspectral imaging technology. Methods: This retrospective study was approved by the IRB committee of our institution, and the rule of informed consent was put forward. This paper analyzes the hyperspectral images (HSI) of patients with primary liver cancer and finds that the spectral reflectance curve of tumor and non-tumor locations are significantly different at different wavelengths. By using the ISODATA algorithm to predict tumor, it is found that the result is obvious. It is speculated that the use of HSI to select computed tomography (CT) images can improve the accuracy of radiomics in the prediction of primary liver cancer. Therefore, we employed HSI in combination with radiomic features to complete this task. We use the attention mechanism to concentrate computing resources into highly correlated features and use these features to predict tumor. Results: Using the hyperspectral-attention mechanism feature selection method, we were able to achieve an AUC of 0.96. Our study shows that HSI and radiomic features could aid in the prediction of liver cancer.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q3 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Res Ctr Machine Vis Engn & Technol Hebei Prov, Baoding, Peoples R China [3]Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [*1]2666 Qiyi East Rd, Baoding 071002, Hebei, Peoples R China
通讯作者:
通讯机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Res Ctr Machine Vis Engn & Technol Hebei Prov, Baoding, Peoples R China [3]Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [*1]2666 Qiyi East Rd, Baoding 071002, Hebei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:4 总访问量:960 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号