高级检索
当前位置: 首页 > 详情页

Impact of localized fine tuning in the performance of segmentation and classification of lung nodules from computed tomography scans using deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Affiliated Hosp, Radiol Dept, Baoding, Hebei, Peoples R China [2]Hebei Univ, Clin Med Coll, Baoding, Hebei, Peoples R China [3]Shenzhen Zhiying Med Imaging, Shenzhen, Guangdong, Peoples R China [4]Univ Hong Kong, Queen Mary Hosp, Dept Med, Hong Kong, Peoples R China
出处:
ISSN:

关键词: segmentation classification lung nodules localized fine tuning site-specific use

摘要:
BackgroundAlgorithm malfunction may occur when there is a performance mismatch between the dataset with which it was developed and the dataset on which it was deployed. MethodsA baseline segmentation algorithm and a baseline classification algorithm were developed using public dataset of Lung Image Database Consortium to detect benign and malignant nodules, and two additional external datasets (i.e., HB and XZ) including 542 cases and 486 cases were involved for the independent validation of these two algorithms. To explore the impact of localized fine tuning on the individual segmentation and classification process, the baseline algorithms were fine tuned with CT scans of HB and XZ datasets, respectively, and the performance of the fine tuned algorithms was tested to compare with the baseline algorithms. ResultsThe proposed baseline algorithms of both segmentation and classification experienced a drop when directly deployed in external HB and XZ datasets. Comparing with the baseline validation results in nodule segmentation, the fine tuned segmentation algorithm obtained better performance in Dice coefficient, Intersection over Union, and Average Surface Distance in HB dataset (0.593 vs. 0.444; 0.450 vs. 0.348; 0.283 vs. 0.304) and XZ dataset (0.601 vs. 0.486; 0.482 vs. 0.378; 0.225 vs. 0.358). Similarly, comparing with the baseline validation results in benign and malignant nodule classification, the fine tuned classification algorithm had improved area under the receiver operating characteristic curve value, accuracy, and F1 score in HB dataset (0.851 vs. 0.812; 0.813 vs. 0.769; 0.852 vs. 0.822) and XZ dataset (0.724 vs. 0.668; 0.696 vs. 0.617; 0.737 vs. 0.668). ConclusionsThe external validation performance of localized fine tuned algorithms outperformed the baseline algorithms in both segmentation process and classification process, which showed that localized fine tuning may be an effective way to enable a baseline algorithm generalize to site-specific use.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Affiliated Hosp, Radiol Dept, Baoding, Hebei, Peoples R China [2]Hebei Univ, Clin Med Coll, Baoding, Hebei, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15709 今日访问量:3 总访问量:1038 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号