高级检索
当前位置: 首页 > 详情页

Neuronal STAT3/HIF-1α/PTRF axis-mediated bioenergetic disturbance exacerbates cerebral ischemia-reperfusion injury via PLA2G4A

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Tianjin Med Univ, Dept Neurosurg, Gen Hosp, Tianjin 300052, Peoples R China [2]Minist Educ, Key Lab Postneurotrauma Neurorepair & Regenerat C, Tianjin Neurol Inst, Tianjin 300052, Peoples R China [3]Hebei Univ, Dept Pathol, Affiliated Hosp, Baoding 071000, Peoples R China
出处:
ISSN:

关键词: polymerase I and transcript release factor (PTRF) cerebral ischemia-reperfusion (I R) injury lipid metabolism mitochondrial bioenergetics oxidative damage

摘要:
Ischemic stroke is an acute and severe neurological disease with high mortality and disability rates worldwide. Polymerase I and transcript release factor (PTRF) plays a pivotal role in regulating cellular senescence, glucose intolerance, lipid metabolism, and mitochondrial bioenergetics, but its mechanism, characteristics, and functions in neuronal cells following the cerebral ischemia-reperfusion (I/R) injury remain to be determined. Methods: Transcription factor motif analysis, chromatin immunoprecipitation (ChIP), luciferase and co-Immunoprecipitation (co-IP) assays were performed to investigate the mechanisms of PTRF in neuronal cells after I/R injury. Lentiviral-sgRNA against PTRF gene was introduced to HT22 cells, and adeno-associated virus (AAV) encoding a human synapsin (hSyn) promoter-driven construct was transduced a short hairpin RNA (shRNA) against PTRF mRNA in primary neuronal cells and the cortex of the cerebral I/R mice for investigating the role of PTRF in neuronal damage and PLA2G4A change induced by the cerebral I/R injury. Results: Here, we reported that neuronal PTRF was remarkably increased in the cerebral penumbra after I/R injury, and HIF-1 alpha and STAT3 regulated the I/R-dependent expression of PTRF via binding to its promoter in neuronal cells. Moreover, overexpression of neuronal PTRF enhanced the activity and stability of PLA2G4A by decreasing its proteasome-mediated degradation pathway. Subsequently, PTRF promoted reprogramming of lipid metabolism and altered mitochondrial bioenergetics, which could lead to oxidative damage, involving autophagy, lipid peroxidation, and ferroptosis via PLA2G4A in neuronal cells. Furthermore, inhibition of neuronal PTRF/PLA2G4A-axis markedly reduced the neurological deficits, cerebral infarct volumes, and mortality rates in the mice following cerebral I/R injury. Conclusion: Our results thus identify that the STAT3/HIF-1 alpha/PTRF-axis in neurons, aggravating cerebral I/R injury by regulating the activity and stability of PLA2G4A, might be a novel therapeutic target for ischemic stroke.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
JCR分区:
出版当年[2022]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Tianjin Med Univ, Dept Neurosurg, Gen Hosp, Tianjin 300052, Peoples R China [2]Minist Educ, Key Lab Postneurotrauma Neurorepair & Regenerat C, Tianjin Neurol Inst, Tianjin 300052, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Tianjin Med Univ, Dept Neurosurg, Gen Hosp, Tianjin 300052, Peoples R China [2]Minist Educ, Key Lab Postneurotrauma Neurorepair & Regenerat C, Tianjin Neurol Inst, Tianjin 300052, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:2 总访问量:962 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号