高级检索
当前位置: 首页 > 详情页

Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China [2]Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union MedicalCollege, Tianjin 300192, PR China [3]College of Medicine, The Affiliated Hospital, Hebei University, Baoding 071000, PR China
出处:
ISSN:

关键词: Zwitterionic Self-assembly Prolonged blood circulation Enhanced cellular uptake Charge conversion

摘要:
Recently, zwitterionic materials have been developed as alternatives to PEG for prolonging the circulation time of nanoparticles without triggering immune responses. However, zwitterionic coatings also hindered the interactions between nanoparticles and tumor cells, leading to less efficient uptake of nanoparticles by cancer cells. Such effect significantly limited the applications of zwitterionic materials for the purposes of drug delivery and the development to novel therapeutic agents. To overcome these issues, surface-adaptive mixed-shell micelles (MSMs) with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)/poly(beta-amino ester) (PAE) heterogeneous surfaces were constructed. Owing to the synergistic effect of zwitterionic coatings and micro-phase-separated surfaces, PMPC mixed-shell micelles exhibited the improved blood circulation time compared to single-PEG-shell micelles (PEGSMs) and single-PMPC-shell micelles (PMPCSMs). Moreover, such. MSMs can convert their surface to positively charged ones in response to the acidic tumor microenvironment, leading to a significant enhancement in cellular uptake of MSMs by tumor cells. This strategy demonstrated a general approach to enhance the cellular uptake of zwitterionic nanoparticles without compromising their long circulating capability, providing a practical method for improving the tumor-targeting efficiency of particulate drug delivery systems. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
JCR分区:
出版当年[2018]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, CollaborativeInnovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, PR China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:2 总访问量:962 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号