高级检索
当前位置: 首页 > 详情页

Identification of FOXM1 as a specific marker for triple-negative breast cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center,Beijing 100191 [2]Department of Pathology, Hebei University Medical College [3]Department of Pathology,Affiliated Hospital of Hebei University,Baoding,Hebei 071000 [4]Department of Neurosurgery, Tianjin Neurological Institute, Tianjin 300052 [5]Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin 300052 [6]Department ofNeurosurgery,Affiliated Hospital of Hebei University,Baoding,Hebei 071000,P.R. China
出处:
ISSN:

关键词: forkhead box M1 breast cancer triple-negative breast cancer molecular subtype

摘要:
The present study aimed to identify the therapeutic role of the forkhead box M1 (FOXM1)-associated pathway in triple-negative breast cancer (TNBC). Using a Cancer Landscapes-based analysis, a gene regulatory network model was constructed. The present results demonstrated that FOXM1 occupies a key position in gene networks and is a critical regulatory gene in breast cancer. Using breast carcinoma gene expression data from The Cancer Genome Atlas, it was identified that FOXM1 expression was increased in the basal-like breast cancer subtype compared with other breast cancer subtypes. RNA-sequencing analysis of MDA-MB-231 cells treated with 4 and 10 mu l/ml Thiostrepton identified 662 and 5,888 significantly differentially expressed genes, respectively. The Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that FOXM1 was highly associated with multiple biological processes and was markedly associated with metabolic pathways in TNBC. The use of Search Tool for the Retrieval of Interacting Genes/Proteins provided a critical assessment and integration of protein-protein interactions, and demonstrated the multiple important functions of FOXM1 in TNBC. Real-time cell analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining were used to assess the anti-tumor activity of Thiostrepton in TNBC cells in vitro. The present results identified that suppression of FOXM1 using Thiostrepton inhibited MDA-MB-231 cell proliferation and the expression of cell cycle-associated genes, including cyclin A2, cyclin B2, checkpoint kinase 1, centrosomal protein 55 and polo like kinase 1. Immunofluorescence staining analysis demonstrated that vimentin, filamentous actin and zinc finger E-box-binding homeobox 1 were all decreased following treatment with Thiostrepton. Furthermore, a BALB/C nude mouse subcutaneous xenograft model was used to verify the function of FOXM1 in vivo. The present results demonstrated that FOXM1 inhibition significantly suppressed MDA-MB-231 cell tumorigenesis in vivo. Overall, the present results suggested that FOXM1 is a key gene that serves important roles in multiple biological processes in TNBC and that it may serve as a novel therapeutic target in TNBC.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2019]版:
Q2 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center,Beijing 100191 [2]Department of Pathology, Hebei University Medical College [3]Department of Pathology,Affiliated Hospital of Hebei University,Baoding,Hebei 071000
通讯作者:
通讯机构: [1]Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center,Beijing 100191 [*1]Department of Pathology,School of Basic Medical Sciences, Peking University Health ScienceCenter, 38 Xueyuan Road, Beijing 100191, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号