高级检索
当前位置: 首页 > 详情页

Predicting linear B-cell epitopes using amino acid anchoring pair composition

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Life Sci, Dept Mol Biol, Baoding 071002, Peoples R China [2]Gen Hosp Jinan Mil Reg, Dept Lab Med, Jinan 250031, Shandong, Peoples R China [3]Beijing Inst Basic Med Sci, Ctr Computat Biol, Beijing 100850, Peoples R China [4]Affiliated Hosp Hebei Univ, Ctr Lab, Baoding 071000, Hebei, Peoples R China [5]Western Univ Hlth Sci, Dept Basic Med Sci, Pomona, CA 91766 USA
出处:
ISSN:

关键词: Linear B-cell epitopes Epitopes prediction Amino acid anchoring pair composition

摘要:
Background: Accurate identification of linear B-cell epitopes plays an important role in peptide vaccine designs, immunodiagnosis, and antibody productions. Although several prediction methods have been reported, unsatisfied accuracy has limited the broad usages in linear B-cell epitope prediction. Therefore, developing a reliable model with significant improvement on prediction accuracy is highly desirable. Results: In this study, we developed a novel model for prediction of linear B-cell epitopes, APCpred, which was derived from the combination of amino acid anchoring pair composition (APC) and Support Vector Machine (SVM) methods. Systematic comparisons with the existing prediction models demonstrated that APCpred method significantly improved the prediction accuracy both in fivefold cross-validation of training datasets and in independent blind datasets. In the fivefold cross-validation test with Chen872 dataset at window size of 20, APCpred achieved AUC of 0.809 and accuracy of 72.94%, which was much more accurate than the existing models, e.g., Bayesb, Chen's AAP methods and the enhanced combination method of AAP with five AP scales. For the fivefold cross-validation test with ABC16 dataset, APCpred achieved an improved AUC of 0.794 and A(CC) of 73.00% at window size of 16, and attained an AUC of 0.748 and A(CC) of 67.96% on Blind387 dataset after being trained with ABC16 dataset. Trained with Lbtope_Confirm dataset, APCpred achieved an increased A(CC) of 55.09% on FBC934 dataset. Within sequence window sizes from 12 to 20, APCpred final model on homology-reduced dataset achieved an optimal AUC of 0.748 and A(CC) of 68.43% in fivefold cross-validation at the window size of 20. Conclusion: APCpred model demonstrated a significant improvement in predicting linear B-cell epitopes using the features of amino acid anchoring pair composition (APC). Based on our study, a webserver has been developed for on-line prediction of linear B-cell epitopes, which is a free access at: http:/ccb.bmi.ac.cn/APCpred/.

基金:

基金编号: 31471244 31271404 31100960 81472744

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 4 区 生物
小类 | 3 区 数学与计算生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 数学与计算生物学
JCR分区:
出版当年[2015]版:
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Life Sci, Dept Mol Biol, Baoding 071002, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Hebei Univ, Coll Life Sci, Dept Mol Biol, Baoding 071002, Peoples R China [3]Beijing Inst Basic Med Sci, Ctr Computat Biol, Beijing 100850, Peoples R China [5]Western Univ Hlth Sci, Dept Basic Med Sci, Pomona, CA 91766 USA [*1]Beijing Inst Basic Med Sci, Ctr Computat Biol, Taiping Rd 27, Beijing 100850, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:0 总访问量:964 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号