高级检索
当前位置: 首页 > 详情页

Spline curve deformation model with prior shapes for identifying adhesion boundaries between large lung tumors and tissues around lungs in CT images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Hebei Univ, Coll Elect Informat Engn, Baoding 071000, Hebei, Peoples R China [2]Hebei Univ, Affiliated Hosp, Baoding 071000, Hebei, Peoples R China [3]Hebei Univ, Coll Math & Informat Sci, Baoding 071000, Hebei, Peoples R China [4]Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200000, Peoples R China
出处:
ISSN:

关键词: lung tumor segmentation shape group-based sparse prior models spline curve deformation model tumors attached to normal structures

摘要:
Purpose Automated segmentation of lung tumors attached to anatomic structures such as the chest wall or mediastinum remains a technical challenge because of the similar Hounsfield units of these structures. To address this challenge, we propose herein a spline curve deformation model that combines prior shapes to correct large spatially contiguous errors (LSCEs) in input shapes derived from image-appearance cues.The model is then used to identify the adhesion boundaries between large lung tumors and tissue around the lungs. Methods The deformation of the whole curve is driven by the transformation of the control points (CPs) of the spline curve, which are influenced by external and internal forces. The external force drives the model to fit the positions of the non-LSCEs of the input shapes while the internal force ensures the local similarity of the displacements of the neighboring CPs. The proposed model corrects the gross errors in the lung input shape caused by large lung tumors, where the initial lung shape for the model is inferred from the training shapes by shape group-based sparse prior information and the input lung shape is inferred by adaptive-thresholding-based segmentation followed by morphological refinement. Results The accuracy of the proposed model is verified by applying it to images of lungs with either moderate large-sized (ML) tumors or giant large-sized (GL) tumors. The quantitative results in terms of the averages of the dice similarity coefficient (DSC) and the Jaccard similarity index (SI) are 0.982 +/- 0.006 and 0.965 +/- 0.012 for segmentation of lungs adhered by ML tumors, and 0.952 +/- 0.048 and 0.926 +/- 0.059 for segmentation of lungs adhered by GL tumors, which give 0.943 +/- 0.021 and 0.897 +/- 0.041 for segmentation of the ML tumors, and 0.907 +/- 0.057 and 0.888 +/- 0.091 for segmentation of the GL tumors, respectively. In addition, the bidirectional Hausdorff distances are 5.7 +/- 1.4 and 11.3 +/- 2.5 mm for segmentation of lungs with ML and GL tumors, respectively. Conclusions When combined with prior shapes, the proposed spline curve deformation can deal with large spatially consecutive errors in object shapes obtained from image-appearance information. We verified this method by applying it to the segmentation of lungs with large tumors adhered to the tissue around the lungs and the large tumors. Both the qualitative and quantitative results are more accurate and repeatable than results obtained with current state-of-the-art techniques.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2020]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect Informat Engn, Baoding 071000, Hebei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:1 总访问量:961 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号