高级检索
当前位置: 首页 > 详情页

Virtual mutagenesis of isocitrate dehydrogenase 1 involved in glioblastoma multiforme

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 中华系列

机构: [1]Hebei Univ,Affiliated Hosp,Dept Neurosurg,Baoding 071000,Hebei,Peoples R China [2]Peking Union Med Coll Hosp, Dept Neurosurg, Beijing 100730, Peoples R China
出处:
ISSN:

关键词: isocitrate dehydrogenase 1 glioma virtual mutagenesis

摘要:
Background Site A132Arg mutations potentially impair the affinity of isocitrate dehydrogenase 1 (IDH1) for its substrate isocitrate (ICT), consequently reducing the production of a-ketoglutarate and leading to tumor growth through the induction of the hypoxia-inducible factor-1 (HIF-1) pathway. However, given that the roles of other active sites in IDH1 substrate binding remain unclear, we aimed to investigate IDH1 mutation pattern and its influence on enzyme function. Methods Fifteen IDH1 catalytic active site candidates were selected for in silico mutagenesis and protein homology modeling. Binding free energy of the IDH1/ICT complexes with single-site mutations was compared with that of the wild type. The affinity of 10 IDH1 catalytic active sites for the ICT substrate was further calculated. Results The IDH1 active site included seven residues from chain A (A77Thr, A94Ser, A100Arg, A132Arg, A109Arg, A275Asp, and A279Asp) and three residues from chain B (B214Thr, B212Lys, and B252Asp) that constituted the substrate ICT-binding site. These residues were located within 0.5 nm of ICT, indicating a potential interaction with the substrate. IDH1 changes of binding free energy (Delta E) suggested that the A132Arg residue from chain A contributes three hydrogen bonds to the ICT a-carboxyl and beta-carboxyl groups, while the other nine residues involved in ICT binding form only one or two hydrogen bonds. Amino acid substitutes at A132Arg, A109Arg, and B212Lys sites, had the greatest effect on enzyme affinity for its substrate. Conclusions Mutations at sites A132Arg, A109Arg, and B212Lys reduced IDH1 affinity for ICT, indicating these active sites may play a central role in substrate binding. Mutations at sites A77Thr, A94Ser, and A275Asp increased the affinity of IDH1 for ICT, which may enhance IDN1 catalytic activity. Mutant IDH1 proteins with higher catalytic activity than the wild-type IDH1 could potentially be used as a novel gene therapy for glioblastoma multiforme. Chin Med J 2011;124(17):2611-2615

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 4 区 医学
小类 | 4 区 医学:内科
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:内科
JCR分区:
出版当年[2011]版:
Q3 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者机构: [1]Hebei Univ,Affiliated Hosp,Dept Neurosurg,Baoding 071000,Hebei,Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:2 总访问量:962 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号