高级检索
当前位置: 首页 > 详情页

基于sart的入侵检测仿真研究

Simulation and Research on Intrusion Detection Based on SART

| 导出 |

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-E

作者:
机构: [1]河北大学附属医院计算机中心
出处:
ISSN:

关键词: 点对点网络 入侵检测 自适应谐振算法 人工神经网络

摘要:
研究点对点网络入侵检测优化问题。点对点网络是一种多跳的、无中心的、自组织无线网络,其主机经常根据需要移动,主机的移动会使网络拓扑结构不断发生变化,而且变化的方式和速度都是不可预测的,这给网络入侵检测带来了困难。传统的检测方法针对网络拓扑结构稳定的网络效果很好,对于自组织的不可预测的点对点网络人侵检测准确性不高。为了提高检测能力和准确度,提出了改进ART2的入侵检测方法(SART)。当人工神经网络中所存储的模式量较大时,可对学习所得模式进行有效组织进而提高检测效率,通过调节幅度与相位的判断条件线性组合来缩小聚类之间的大小差异。仿真结果表明,相比其它检测算法,改进后的算法聚类的检测率较高,误检率较低,可满足误用检测及异常检测的需求。

语种:
第一作者:
第一作者机构: [1]河北大学附属医院计算机中心
推荐引用方式(GB/T 7714):

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号