高级检索
当前位置: 首页 > 详情页

Inhibition of CDK5 signaling mediated inflammation in macrophages promotes cutaneous wound healing

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang 050017, Hebei, China. [2]Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China. [3]The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050011, China.
出处:

关键词: Cutaneous wound healing Cyclin-dependent protein kinase 5 Macrophages Phenotypic transformation Silent information regulator Sirtuin 1

摘要:
Cyclin-dependent kinase 5 (CDK5) plays a critical role in the inflammatory response. Macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. However, the effectiveness of CDK5 in macrophages on cutaneous wound healing remains inadequately characterized. We determined the role of CDK5 signaling pathway in macrophages in mouse cutaneous wound healing through the established macrophage-specific deletion of CDK5 (myeCDK5-/-) mice and the pharmacological CDK5 inhibitor Roscovitine. Phosphorylated proteomics, western blotting, Masson staining, and dualimmunofluorescence staining were performed to investigate the potential mechanisms underlying CDK5-mediated inflammatory regulation in macrophages in wound healing. CDK5 expression and phosphorylation were both elevated significantly in cutaneous wound healing process in mice. Moreover, an accelerated wound healing in myeCDK5-/- mice was exhibited with the reduced pro-inflammatory mediators (IL-1β and iNOS) and the elevated anti-inflammatory markers (IL-10 and CD163) expression significantly. CDK5 deficiency in macrophages enhanced tissue remodeling, evidenced by increased collagen deposition and capillary density (CD31+ cells). Consistently, Roscovitine-treated mice also showed accelerated wound healing, accompanied by decreased pro-inflammatory factors and increased anti-inflammatory markers at the wound site. Mechanistically, the decreased phosphorylation of SIRT1 at the Ser14 and Ser47 sites, as a substrate of CDK5, was confirmed in myeCDK5-/- mice. These data are the first to indicate that CDK5 signaling-dependent regulation of SIRT1 phosphorylation in macrophage-mediated inflammation is required for the wound healing process, warranting consideration of the CDK5-SIRT1 pathway as a therapeutic target for cutaneous wound healing.© 2025. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, and Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei Medical University, Shijiazhuang 050017, Hebei, China. [3]The Fourth Department of Bone Injury, The First Affiliated Hospital of Hebei University of Traditional Chinese Medicine, Shijiazhuang 050011, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15714 今日访问量:3 总访问量:1038 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号