高级检索
当前位置: 首页 > 详情页

A ratiometric fluorescence and visual sensor based on conjugated polymer nanoparticles@MnO2 probe for organophosphorus pesticides detection

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei, PR China [2]Department of Rehabilitation Medicine, Affiliated Hospital of Hebei University, Baoding, 071002, Hebei, PR China
出处:
ISSN:

关键词: Organophosphorus pesticide Conjugated polymer nanoparticles Fluorescence resonance energy transfer Fluorescence probe Ratiometric fluorescence Fluorescence visualization

摘要:
Organophosphorus (OPs) pesticide residues pose significant threats to human health and the environment. To tackle this issue, we synthesized water-soluble fluorescent conjugated polymer nanoparticles (WSCPNs), which offer high fluorescence intensity, simple preparation methods, and ease of functionalization, making them ideal candidates for fluorescent sensing applications. These WSCPNs were subsequently used to prepare a WSCPNs@MnO2 probe via in situ synthesis, resulting in efficient fluorescence resonance energy transfer between WSCPNs and MnO₂. This system effectively oxidizes non-fluorescent o-Phenylenediamine (OPD) into 2,3-diaminophenazine (DAP). In the absence of OPs, acetylthiocholine (ATCh) is catalyzed by acetylcholinesterase (AChE) to produce thiocholine (TCh), which reduces MnO₂ on the surface of the probe, restoring the fluorescence intensity. When OPs are present, AChE's catalytic pathway is inhibited, limiting the recovery of fluorescence intensity in WSCPNs. The remaining MnO₂ can further oxidize OPD to DAP, allowing quantitative analysis by monitoring changes in fluorescence signal ratios, achieving a detection limit of 0.0139 ng/mL. Additionally, color changes can be captured and analyzed using a smartphone, facilitating fluorescence visualization for OPs detection, achieving a detection limit of 0.025 ng/mL. This method exhibits excellent anti-interference capabilities and has been successfully applied to detect organophosphorus pesticides in leaves and soil, demonstrating the effectiveness of our ratiometric fluorescence and fluorescence visualization dual-mode sensing platform for monitoring OPs.Copyright © 2024 Elsevier B.V. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 2 区 化学
小类 | 2 区 分析化学
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q1 CHEMISTRY, ANALYTICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Hebei University), Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, Hebei, PR China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:4 总访问量:964 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号