高级检索
当前位置: 首页 > 详情页

Integration of single-cell RNA-seq and bulk RNA-seq to construct liver hepatocellular carcinoma stem cell signatures to explore their impact on patient prognosis and treatment

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Ultrasound and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, 071052, China. [2]Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, 071052, China. [3]Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, 071052, China. [4]Department of Ultrasound, Affiliated Hospital of Hebei University, Baoding, 071052, China. [5]Department of Pathology, Affiliated Hospital of Hebei University, Baoding, 071052, China. [6]Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, 071052, China.
出处:
ISSN:

摘要:
Liver hepatocellular carcinoma (LIHC) is a prevalent form of primary liver cancer. Research has demonstrated the contribution of tumor stem cells in facilitating tumor recurrence, metastasis, and treatment resistance. Despite this, there remains a lack of established cancer stem cells (CSCs)-associated genes signatures for effectively predicting the prognosis and guiding the treatment strategies for patients diagnosed with LIHC.The single-cell RNA sequencing (scRNA-seq) and bulk RNA transcriptome data were obtained based on public datasets and computerized firstly using CytoTRACE package and One Class Linear Regression (OCLR) algorithm to evaluate stemness level, respectively. Then, we explored the association of stemness indicators (CytoTRACE score and stemness index, mRNAsi) with survival outcomes and clinical characteristics by combining clinical information and survival analyses. Subsequently, weighted co-expression network analysis (WGCNA) and Cox were applied to assess mRNAsi-related genes in bulk LIHC data and construct a prognostic model for LIHC patients. Single-sample gene-set enrichment analysis (ssGSEA), Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Tumor Immune Estimation Resource (TIMER) analysis were employed for immune infiltration assessment. Finally, the potential immunotherapeutic response was predicted by the Tumor Immune Dysfunction and Exclusion (TIDE), and the tumor mutation burden (TMB). Additionally, pRRophetic package was applied to evaluate the sensitivity of high and low-risk groups to common chemotherapeutic drugs.A total of four genes (including STIP1, H2AFZ, BRIX1, and TUBB) associated with stemness score (CytoTRACE score and mRNAsi) were identified and constructed a risk model that could predict prognosis in LIHC patients. It was observed that high stemness cells occurred predominantly in the late stages of LIHC and that poor overall survival in LIHC patients was also associated with high mRNAsi scores. In addition, pathway analysis confirmed the biological uniqueness of the two risk groups. Personalized treatment predictions suggest that patients with a low risk benefited more from immunotherapy, while those with a high risk group may be conducive to chemotherapeutic drugs.The current study developed a novel prognostic risk signature with genes related to CSCs, which provides novel ideas for the diagnosis, prognosis and treatment of LIHC.Copyright: © 2024 Liu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Department of Ultrasound and Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, 071052, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:0 总访问量:960 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号