高级检索
当前位置: 首页 > 详情页

Gesture recognition of continuous wavelet transform and deep convolution attention network

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China [3]Hebei Univ, Affiliated Hosp, Baoding, Peoples R China
出处:
ISSN:

关键词: sEMG gesture recognition continuous wavelet transform DCNN SAM residual module

摘要:
To solve the problem of missing data features using a deep convolutional neural network (DCNN), this paper proposes an improved gesture recognition method. The method first extracts the time-frequency spectrogram of surface electromyography (sEMG) using the continuous wavelet transform. Then, the Spatial Attention Module (SAM) is introduced to construct the DCNN-SAM model. The residual module is embedded to improve the feature representation of relevant regions, and reduces the problem of missing features. Finally, experiments with 10 different gestures are done for verification. The results validate that the recognition accuracy of the improved method is 96.1%. Compared with the DCNN, the accuracy is improved by about 6 percentage points.

基金:
语种:
被引次数:
WOS:
PubmedID:

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China
通讯作者:
通讯机构: [1]Hebei Univ, Coll Elect & Informat Engn, Baoding, Peoples R China [2]Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Baoding, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:1 总访问量:961 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号