高级检索
当前位置: 首页 > 详情页

An Improved Image Classification Method for Cervical Precancerous Lesions Based on ShuffleNet

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Peoples R China [2]Hebei Univ, Affiliated Hosp, Baoding 071002, Peoples R China
出处:
ISSN:

摘要:
With the rapid development of deep learning, automatic lesion detection is used widely in clinical screening. To solve the problem that existing deep learning-based cervical precancerous lesion detection algorithms cannot meet high classification accuracy and fast running speed at the same time, a ShuffleNet-based cervical precancerous lesion classification method is proposed. By adding channel attention to the ShuffleNet, the network performance is improved. In this study, the image dataset is classified into five categories: normal, cervical cancer, LSIL (CIN1), HSIL (CIN2/CIN3), and cervical neoplasm. The colposcopy images are expanded to solve the problems of the lack of colposcopy images and the uneven distribution of images from each category. For the test dataset, the accuracy of the proposed CNN models is 81.23% and 81.38%. Our classifier achieved an AUC score of 0.99. The experimental results show that the colposcopy image classification network based on artificial intelligence has good performance in classification accuracy and model size, and it has high clinical applicability.

基金:
语种:
被引次数:
WOS:
PubmedID:

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版]

第一作者:
第一作者机构: [1]Hebei Univ, Coll Qual & Tech Supervis, Baoding 071002, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15101 今日访问量:4 总访问量:964 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号