高级检索
当前位置: 首页 > 详情页

ISANET: Non-small cell lung cancer classification and detection based on CNN and attention mechanism

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Chongqing Univ, Sch Big Data & Software Engn, Chongqing 400044, Peoples R China [2]Hebei Univ, Affiliated Hosp, Dept Radiol, Baoding 071000, Peoples R China
出处:
ISSN:

关键词: Non-small cell lung cancer CNN Attention mechanism Deep learning

摘要:
Lung cancer is one of the malignant tumors with high morbidity and mortality worldwide. Among them, non small cell lung cancer accounts for about 85% of all lung cancers. In the existing chest CT plain scan or enhanced scan, non-small cell lung cancer images may overlap significantly in imaging features, leading to misdiagnosis and the inability to give an accurate histological classification. Among the existing relevant non small cell lung cancer classification models, few studies on the precise classification of non-small cell lung cancer types. A multi-category classification model based on CNN is proposed to tackle these problems. The proposed model ISANET embeds channel attention and spatial attention mechanisms to focus on pathological areas based on InceptionV3. The three-category lung cancer dataset provided by the Affiliated Hospital of Hebei University is used, including lung squamous cell carcinoma, lung adenocarcinoma, and normal. Comparative experiments are done between ISANET and the traditional models AlexNet, VGG16, InceptionV3, MobilenetV2, and ResNet18. Results of experiments on two public datasets verify the effectiveness of ISANET, reaching 95.24% and 98.14% respectively, which indicates that ISANET has obtained superior accuracy in classifying non-small cell lung cancer.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2022]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Chongqing Univ, Sch Big Data & Software Engn, Chongqing 400044, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15100 今日访问量:4 总访问量:960 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号