高级检索
当前位置: 首页 > 详情页

Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000 [2]Department of Neurosurgery,Affiliated Hospital of Hebei University,Baoding,Hebei 071000,P.R. China
出处:
ISSN:

关键词: rosiglitazone neuroprotection traumatic brain injury inflammatory autophagy apoptosis rats

摘要:
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity in adults and children worldwide. Recent studies have demonstrated that both apoptosis and autophagy participate in TBI-induced neuronal cell death and functional loss. The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist rosiglitazone (RSG) is a well-known anti-inflammatory, which carries out its effects via the activation of PPAR-gamma. Previous studies have suggested that RSG may exert neuroprotective effects in animal models of both chronic and acute brain injury; however, whether RSG is involved in autophagic neuronal death following TBI remains to be elucidated. The present study aimed to determine whether RSG carries out its neuroprotective properties via the attenuation of neuronal apoptosis and autophagy, following TBI in a rat model. Furthermore, the role of RSG was investigated with regards to the modulation of inflammation and glutamate excitotoxicity, and the impact of RSG on functional recovery following TBI was determined The rats were subjected to controlled cortical impact injury, prior to being randomly divided into three groups: A sham-operated group, a TBI group, and an RSG treatment group. The RSG treatment group was intraperitoneally treated with 2 mg/kg RSG immediately after TBI. The results of the present study demonstrated that RSG treatment following TBI significantly reduced neuronal apoptosis and autophagy, and increased functional recovery. These effects were correlated with a decrease in the protein expression levels of tumor necrosis factor alpha and interleukin-6. However, no significant changes were observed in the protein expression levels of glutamate transporter-1 in the brain cortex. The results of the present study provide in vivo evidence that RSG may exert neuroprotective effects via the inhibition of neuronal apoptosis and autophagy following experimental TBI in rats, and the mechanism underlying these effects may be associated with the anti-inflammatory action of RSG. The present study offers a novel insight into the potential use of RSG as a neuroprotective agent for the treatment of cerebral injuries.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
JCR分区:
出版当年[2015]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL Q4 ONCOLOGY
最新[2023]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, Central Hospital of Cangzhou, Cangzhou, Hebei 061000
通讯作者:
通讯机构: [*1]Department of Neurosurgery,Central Hospital of Cangzhou, 16 Xinhua Western Road, Cangzhou,Hebei 061000, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:15339 今日访问量:0 总访问量:992 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北大学附属医院 技术支持:重庆聚合科技有限公司 地址:保定市莲池区裕华东路212号